Publications
Contamination of hybrid hernia meshes compared to bioresorbable PhasixTM Mesh in a rabbit subcutaneous implant inoculation model
Spencer P. Lake, Nathaniel F.N. Stoikes, Amit Badhwar, Corey R. Deeken
Annals of Medicine and Surgery
Link to Publication: https://www.sciencedirect.com/science/article/pii/S2049080119301141?via%3Dihub
Abstract
Hybrid hernia meshes combine biological tissue-derived extracellular matrix with permanent or resorbable synthetic. The objective of this study was to evaluate hybrid meshes (Gore® Synecor, Zenapro™, Ovitex™ 1S Reinforced Bioscaffold Permanent, and Ovitex™ 1S Reinforced Bioscaffold Resorbable) compared to non-hybrid, bioresorbable synthetic mesh (Phasix™ Mesh) in a rabbit bacterial inoculation model.
Methods
Subcutaneous pockets were bilaterally created in male, New Zealand White rabbits (n = 25). Circular meshes (3.8 cm diameter) were implanted and inoculated with 1 × 106 colony forming units (CFU) of clinically-isolated methicillin-resistant Staphylococcus aureus (MRSA). A given animal received a single mesh type. Seven days post-inoculation, animals were euthanized and white material and microbial colonization were assessed by abscess scoring and CFU quantification, respectively. Non-parametric Kruskal-Wallis with Dunn’s post-hoc tests compared results for different meshes.
Results
Phasix™ Mesh and Synecor exhibited significantly lower abscess scores than Zenapro™, Ovitex™ 1S Permanent, and Ovitex™ 1S Resorbable (p < 0.05). All pocket swabs for Zenapro™ and Ovitex™ meshes were positive for MRSA (100%), with 20% of Synecor and 0% Phasix™ Mesh. Microbial colonization was significantly lower for Phasix™ Mesh (0 CFU) relative to Zenapro™ (6.73 × 107 CFU (median)), Ovitex™ 1S Permanent (7.87 × 107 CFU) and Ovitex™ 1S Resorbable (1.45 × 108 CFU), and for Synecor (0 CFU) relative to both Ovitex™ meshes. Phasix™ Mesh was the only device with no detectable abscess or microbial colonization.
Conclusions
Phasix™ Mesh demonstrated no detectable abscess or microbial colonization at 7-days post-implantation and inoculation, in contrast with four hybrid meshes, which all demonstrated colonization in a rabbit bacterial inoculation model.
Authors and Funding
Dr. Stoikes is a consultant for, and Dr. Badhwar is an employee of, C.R. Bard, Inc. Dr. Lake is a consultant for, and Dr. Deeken is the owner of, Covalent Bio, LLC, which received funding from C. R. Bard, Inc. for this project, as well as other, unrelated projects.